
J Eng Math (2008) 61:249–269
DOI 10.1007/s10665-008-9216-4

Thermomechanical behavior of polarizable and magnetizable
electroconductive solids subjected to induction heating

B. Drobenko · O. Hachkevych · T. Kournyts’kyi

Received: 31 October 2006 / Accepted: 28 January 2008 / Published online: 20 February 2008
© Springer Science+Business Media B.V. 2008

Abstract This paper presents a mathematical and numerical model developed for coupled time-dependent elec-
tromagnetic, temperature and mechanical processes, which occur in polarizable and magnetizable electroconductive
solids subjected to an electromagnetic field generated by external currents. The electromagnetic field in the solid
and in its surroundings is described by Maxwell’s equations. The temperature variation in the solid is governed by
the classical heat-transfer equation. To predict the stress–strain state of the solid, a nonisothermal theory for ther-
moplastic materials is used. The model takes into account the temperature dependence of all material coefficients
and the nonlinear dependence of the induction on the strength of both the electrical and the magnetic fields. The
problem is solved by a finite-element method and a unified set of single time-step algorithms. As an example, the
process of high-temperature induction heating of a finite cylinder is considered.

Keywords Finite-element method · High-temperature induction heating · Process coupling ·
Thermo-mechanics

1 Introduction

Electromagnetic fields are widely used in modern technologies with the aim of improving the strength and reliability
of solid materials. In particular, induction heating is frequently applied for hardening, quenching, tempering, brazing
and other heat-processing techniques and demands very accurate control of heated depth and surface areas. There-
fore, to develop rational heating regimes, the in-depth investigation of coupled electrical, thermal and mechanical
processes in solid materials upon the material’s polarizable and magnetizable properties is of high importance.

In classical models dealing with modeling deformation in electroconductive solids, the material properties are
treated as temperature-independent and only elastic deformation is taken into account. Such models are not expected
to predict correct results when a solid is heated to high temperatures. The behavior of most materials during heat
treatment is nonlinear and very complex. For example, carbon steel undergoes plastic deformations [1] already at
temperatures around 550–600◦C. Its electrical conductivity in the temperature range 20–900◦C can change by a
factor of 6–8 and the magnetic permeability even by several orders [2]. Moreover, electroconductive materials can
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be magnetized or polarized during the process of heat treatment. Therefore, more adequate mathematical models
are to be developed to capture coupled thermal, mechanical and electromagnetic processes in electroconductive
solids in a wide temperature range, accounting for nonlinearity of the material properties.

In most recent work in the field of induction heating the coupling of only electromagnetic and thermal processes
is considered [3–9]. Simultaneous consideration of electromagnetic, thermal and elastic processes in composite
solids subjected to magnetic fields are examined in [10–13] while taking into account the geometrical nonlinearity.
In [14–16] the effect of induction heating on the thermomechanical behavior of axi-symmetric thermosensitive
elastic and elasto–plastic magnetically soft ferromagnetic solids is investigated.

In this paper a mathematical model and an approach to a numerical simulation of coupled mechanical, thermal
and electromagnetic processes in electroconductive solids subjected to an external electromagnetic field is devel-
oped. The model accounts for thermo–elasto–plastic deformation of the thermally sensitive solid as well as the
nonlinear dependence of induction on the strength of both the electrical and the magnetic fields. The electromag-
netic field in the solid and in its surroundings is described by Maxwell’s equations. The temperature evolution in
the solid is governed by the classical heat-transfer equation. The stress–strain state of the solid is computed within
the nonisothermal theory for thermo–elastic–plastic materials.

2 The mathematical problem

Consider an electroconductive solid occupying the domain � ∈ E3 (with no electric charges and currents inside),
whose surface � is Lipschitz-continuous. The solid is subjected to an electromagnetic field produced by a set of
currents of density j(0)(r, t) (r is the radius-vector) distributed in a finite region of surroundings (E3\�).

Let us pose the problem of determining the electromagnetic field, the temperature and stress–strain state in the
solid for given thermal and mechanical boundary and initial conditions. The electromechanical, thermo-electric
and magnetostriction effects are neglected and the solid is assumed to be at rest. Suppose the frequency of the
electromagnetic field is not close to resonance so that the deformation can be treated as quasistatic. Suppose also
that the electric- and magnetic-field inductions are nonlinear functions of the corresponding strengths while the
strength and induction vectors are parallel. The effect of the external electromagnetic field on heat transfer and
deformation is modelled by heat sources and bulk (ponderomotive) forces. Joule heat sources, as well as those due
to repolarization and remagnetization are considered.

The model will take into account the temperature dependence of all material properties. In the numerical inves-
tigation these dependencies will be approximated by interpolation splines constructed by real curves describing
temperature behavior of a solid in an electromagnetic field during the entire heating–cooling range.

2.1 The electromagnetic model

The electromagnetic field in the solid in the case of the state equations

D(0) = ε0E(0), D(1) = D(1)∗ (E(1), T ), B(0) = µ0H(0), B(1) = B(1)∗ (H(1), T ), j(1) = γ∗E(1), (1)

is described by Maxwell’s equations:

�∇ × H(m) = ∂D(m)

∂t
+ j(m), (2)

�∇ × E(m) = −∂B(m)

∂t
, (3)

�∇ · D(m) = 0, r ∈ E3, (4)

where E = (E1, E2, E3)
T , H = (H1,H2,H3)

T , D = (D1,D2,D3)
T , B = (B1, B2, B3)

T denote the strengths and
inductions of the electric and magnetic fields, respectively (index “T” denotes the transpose); D∗=(D∗1,D∗2,D∗3)

T ,
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B∗ = (B∗1, B∗2, B∗3)
T are, in general, nonlinear functions relating induction and strength vectors for the elec-

tric and magnetic fields in a solid, respectively (in fact, these functions represent polarization and magnetization
curves), T is the temperature, ε0, µ0 are the dielectric and magnetic permeabilities of vacuum (the surrounding
medium is assumed to have the electromagnetic properties of the vacuum); j is the current density, γ∗ is the tensor of
electrical conductivity of a solid, �∇ = (∇1,∇2,∇3) is Hamilton’s operator; ( �∇×), ( �∇·) denote curl and divergence,
respectively. The index m = 0 refers to the surrounding medium and index m = 1 refers to the solid.

Let us reduce the basic correlations (2)–(4) for an electroconductive solid to a set of equations written with
respect to the electric-field-strength vector E. Substitution of Eq. (1) in (2)–(4) yields for the solid

�∇ × H(1) = [ε∗]
∂E(1)

∂t
+ ∂D(1)∗

∂T

∂T

∂t
+ γ∗E(1), (5)

�∇ × E(1) = −[µ∗]∂H(1)

∂t
− ∂B(1)∗

∂T

∂T

∂t
, (6)

�∇ ·
(

D(1)∗ (E(1), T)
)

= 0, r ∈ �. (7)

Since the induction and strength vectors are parallel, we have

[ε∗] =
⎡
⎣

ε11 0 0
0 ε22 0
0 0 ε33

⎤
⎦ , εii = ∂D

(1)
∗i

∂E
(1)
i

, [µ∗] =
⎡
⎣

µ11 0 0
0 µ22 0
0 0 µ33

⎤
⎦ , µii = ∂B

(1)
∗i

∂H
(1)
i

, i = 1, 2, 3.

If the materials are isotropic, the matrices [ε∗] and [µ∗] are reduced to diagonal ones:

[ε∗] =
⎡
⎣

ε 0 0
0 ε 0
0 0 ε

⎤
⎦ , ε = ∂|D∗|

∂|E(1)| , [µ∗] =
⎡
⎣

µ 0 0
0 µ 0
0 0 µ

⎤
⎦ , µ = ∂|B∗|

∂|H(1)| ,

where ε, µ are the differential dielectric and magnetic permeabilities of the solid, which are directly derived—at
a given temperature—from the magnetization and polarization curves, respectively.

Multiply Eq. (6) by [µ∗]−1 and apply the curl( �∇×) to it:

�∇ ×
(

[µ∗]−1 �∇ × E(1)
)

+ �∇ × ∂H(1)

∂t
= −�∇ ×

(
[µ∗]−1 ∂B(1)∗

∂T

∂T

∂t

)
. (8)

Let us change the order of the operations curl and ∂
∂t

and substitute Eq. (5) in Eq. (8):

�∇ ×
(

[µ∗]−1 �∇ × E(1)
)

+ ∂

∂t

(
[ε∗]

∂E(1)

∂t
+ ∂D(1)∗

∂T

∂T

∂t
+ γ∗E(1)

)
= −�∇ ×

(
[µ∗]−1 ∂B

(1)∗
∂T

∂T

∂t

)
. (9)

Carrying out the time differentiation in the last equation, we obtain an equation written in terms of the electric-field
strength:

�∇ ×
(

[µ∗]−1 �∇ × E(1)
)

+ ∂γ∗
∂t

E(1) + Fγ

∂E(1)

∂t
+ [ε∗]

∂2E(1)

∂t2 = FB. (10)

Here

Fγ = γ∗ + 2D∗ET

∂T

∂t
+ D∗EE, FB = −∂2D(1)∗

∂T 2

(
∂T

∂t

)2

− ∂D(1)∗
∂T

∂2T

∂t2 − �∇ ×
(

[µ∗]−1 ∂B(1)∗
∂T

∂T

∂t

)
.

The elements of the matrices D∗ET and D∗EE are as follows:

[D∗ET ]ii = ∂εii

∂T
, [D∗EE]ii = ∂2Di

∂2E
(1)
i

∂E
(1)
i

∂t
.
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Note that in the case of a harmonic quasi-steady external electromagnetic field, that is, when γ >> εω, the
displacement currents are negligible compared to conduction currents in a solid [17]. This is the case for the range
of frequencies typically used in an industrial set-up when dealing with highly conductive solids. Hence Eq. (10)
becomes a parabolic-type equation:

�∇ ×
(

[µ∗]−1 �∇ × E(1)
)

+ ∂γ∗
∂t

E(1) + γ∗
∂E(1)

∂t
= −�∇ ×

(
[µ∗]−1 ∂B(1)∗

∂T

∂T

∂t

)
. (11)

The corresponding equation for the surrounding medium is as follows:

�∇ × (µ−1
0

�∇ × E(0)) + ε0
∂2E(0)

∂t2 = −∂j(0)

∂t
. (12)

The electric-field strength in a system solid-surroundings being known, the magnetic field induction is found from
the relation

B(m) = −
∫ t

0

�∇ × E(m)dt ′, (13)

while the electric-field induction D and the magnetic field strength H as well as the dielectric [ε∗] and magnetic
[µ∗] permeabilities of the solid at each moment of time are calculated from the constitutive equation (1) according
to the magnetization and polarization curves.

Suppose at initial moment of time there is no electromagnetic field in the system, that is,

E(m)(r, 0) = ∂E(m)(r, 0)

∂t
= 0, r ∈ E3. (14)

The common practice is to start with the integral form of Maxwell’s equations in establishing correlations for the
electromagnetic-field characteristics on the solid-surrounding interface �. Provided interface currents are absent,
these correlations yield two independent conditions expressing equality of the tangential components of the electric-
and magnetic-field-strength vectors on the interface [18]. In our case these conditions are

n × (E(1) − E(0)) = 0, (15)

n ×
(

[µ∗]−1 �∇ × E(1) − µ−1
0

�∇ × E(0)
)

= 0, (16)

where n is the unit vector normal to the solid’s surface �.
Suppose the following condition [18] is fulfilled at the infinity

lim|r|→∞
|r|
∣∣∣E(0)

∣∣∣ = const. (17)

The Maxwell equations can be written in terms of the magnetic-field-strength vector H. In the case of a quasi-steady
external electromagnetic field for the solid they become

( �∇ ×
(
γ −1∗ �∇ × H

))
+ [µ∗]

∂H
∂t

= − ∂B
∂T

∂T

∂t
, (18)

E = γ −1∗ �∇ × H, (19)

�∇ · B∗(H, T ) = 0, r ∈ �. (20)

Boundary and initial conditions are constructed in the same way as in the case when the Maxwell equations are
written in terms of the electric-field strength.
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2.2 The thermal model

The temperature field in the solid is described by the equation:

c
∂T

∂t
= �∇ ·

(
λ �∇T

)
+ Q, r ∈ �. (21)

Here c = c(T ) denotes the heat capacity; λ = λ(T ) is the coefficient of heat conduction; Q is the heat-source power.
For a quasi-steady electromagnetic field far from resonance frequency, the temperature field can be calculated using
heat sources averaged over the electromagnetic-wave period Tω [19]:

Q = 1

Tω

∫ t+Tw

t

(
j · E + H

∂B
∂t

+ E
∂D
∂t

)
dt. (22)

Note that the first term in (22) characterises Joule heat sources; the second and third terms are heat sources due to
remagnetization and repolarization, respectively.

Suppose at an initial moment of time the temperature in the solid is defined in term of the function T0(r):

T (r, 0) = T0(r), r ∈ � (23)

and the solid undergoes convective heat exchange with the surroundings through the interface �:

λn · �∇T + β(T − TS) = 0, r ∈ �, (24)

where β = β(T ) denotes the heat-transfer coefficient; TS is the temperature of the surroundings.

2.3 The mechanical model

The elasto–plastic state of the solid is described by the nonisothermal theory of thermoplastic materials [20]. The
key equations of the theory are written in terms of increments while the plastic deformation is considered in a
step-by-step fashion.

We assume that the plastic deformation occurs when the point σij in stress space appears on the yield surface


(σij − oij ) = K2
(∫

dε̄p, T

)
, (25)

where σij are stress-tensor components; oij are the coordinates of the yield surface centre in stress space; K2 is a
function defining the size of the yield surface depending on the temperature and the accumulated plastic deformation∫

dε̄p; dε̄p =
√

2
3 dε

p
ij dε

p
ij is the intensity of the plastic-deformation increments. Also


(σij ) = (1.5 · sij sij
)0.5

, sij = σij − δij σii/3, (26)

where δij is the Kronecker delta.
The increments of the stress-tensor components during load step [t, t + dt] are written as:

dσij = Gt+dt
ijkl (dεkl − dεT

kl − dε
p
kl) + dGijkl(εkl − εT

kl − ε
p
kl). (27)

Here Gt+dt
ijkl , dGijkl are values of the elastic-modulus components at the time t + dt (at the end of the loading step)

and their increments at a given step, correspondently; εkl, ε
T
kl, ε

p
kl are components of the total-strain, thermal-strain

and plastic-strain tensors at the time t (at the beginning of the step).
To calculate the increments of the plastic strain, the associated flow rule describing growth of the plastic strains

normally to the yield surface reads:

dε
p
ij = dχ

∂


∂σij

. (28)
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The increments of the thermal strains are calculated as follows

dεT
ij = δij (α

t+dtdT + (αt+dt − α)(T − T0)), (29)

where αt+dt , αt are the thermal-expansion coefficient at the corresponding moments of time.
During the deformation process the yield surface can move in the stress state as well as change its shape. In this

case the increment of the surface-centre coordinates is determined by the correlation [20]

doij = da(σij − oij ), (30)

where da, using condition d
 = 0 is given by

da =
(

dσij

∂


∂σij

− 2K
∂K

∂ε̄
p
i

dε̄
p
i − 2K

∂K

∂T
dT

)(
(σij − oij )

∂


∂σij

)−1

. (31)

Taking into account the expressions (24)–(30), the correlations between increments of stresses and strains take
the form [20]

dσij =
⎛
⎝Gt+dt

ijmn − Gt+dt
ijvw

∂

∂σvw

∂

∂σkl

Gt+dt
klmn

2
3Ht ∂


∂σpq

∂

∂σpq

+ Gt+dt
pqrs

∂

∂σpq

∂

∂σrs

⎞
⎠(dεmn − dεT

mn

)

+
⎛
⎝dGijmn − Gt+dt

ijvw
∂


∂σvw

∂

∂σkl

dGklmn

2
3Ht ∂


∂σpq

∂

∂σpq

+ Gt+dt
pqrs

∂

∂σpq

∂

∂σrs

⎞
⎠(εmn − ε

p
mn − εT

mn

)

+
√

2
3

∂

∂σkl

∂

∂σkl

Gt+dt
ijmn

∂

∂σmn

∂σi

∂T

2
3Ht ∂


∂σpq

∂

∂σpq

+ Gt+dt
pqrs

∂

∂σpq

∂

∂σrs

dT ,

or in matrix form:

{dσ } = [C]t+�t ({dε} − {dεT }) + [dC] ({ε} − {εT } − {εp}) + {Z}dT . (32)

Here Ht is the instantaneous slope of the stress–plastic–strain diagram, while the components of the strain and
stress tensors are given by the vectors [21]

{ε} = (ε11, ε22, ε33, 2ε12, 2ε13, 2ε23)
T , {σ } = (σ11, σ22, σ33, σ12, σ13, σ23)

T .

Note that the last two terms of Eq. (32) describe the dependencies of the elastic material properties and yielding

limit of a material on the temperature. The terms Ht and dσi

dT
may be determined from uniaxial stress–strain data at

time t .
The set of model equations is to be completed by geometric correlations (considering small deformations only)

and equilibrium equations [21]:

{ε} = [A]u, [A]T {σ } + F = 0, r ∈ � (33,34)

and known boundary conditions

[�n]T {σ } = p, r ∈ �σ , u = u0, r ∈ �u, �σ ∩ �u = ∅; �σ ∪ �u = ∂�. (35)

Here

[A] =
⎡
⎣

∇1 0 0 ∇2 ∇3 0
0 ∇2 0 ∇1 0 ∇3

0 0 ∇3 0 ∇1 ∇2

⎤
⎦

T

, [�n] =
⎡
⎣

n1 0 0 n2 n3 0
0 n2 0 n1 0 n3

0 0 n3 0 n1 n2

⎤
⎦

T

are correspondently the matrices of the differential operator of geometric correlations in linear elasticity and the
unit vector of the external normal to the surface �σ ; u = (u1, u2, u3)

T is the displacement vector; p is the mechan-
ical-load vector on the surface �σ ; u0 denotes the displacement vectors defined on the surface �u; F is the vector
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of bulk (ponderomotive) forces. The adopted assumptions regarding quasi-steadiness of the electromagnetic field
lead to the following expression for the ponderomotive forces [19]

F = 1

Tω

∫ t+Tω

t

(j × B + (P · �∇) · E + (M · �∇) · B + M × ( �∇ × B))dt, (36)

where P, M are the polarization and magnetization vectors. Taking into account Eq. (1), they are written as

P(E, T) = D∗(E, T) − ε0E, M(H, T) = µ−1
0 B∗(H, T) − H. (37,38)

Note that the first and the last terms in Eq. (36) represent Ampere and Calvin forces, while the third and fourth
stand for the forces acting on the magnetic dipoles.

2.4 Basic equations of the model

The numerical approach developed above for the determination of the stress–strain state of an electroconductive
solid subjected to an electromagnetic field is split in two stages. The first stage deals with solving the coupled
problem regarding electrodynamics and thermal conductivity. If the strength vector E is chosen as a basic function,
the electromagnetic field in the system composed of solid and surroundings and the temperature distribution in the
solid are determined by Eqs. (7), (10) and (21) for the solid � and (4) and (12) for the surroundings E3\� subject
to the initial conditions (14), (23), the conditions (15), (16) and (24) on the interface � as well as by condition (17)
at infinity. The magnetic-field induction B is then found from Eq. (13), while the electric-field induction D and
magnetic-field strength H, as well as the differential electric permeability [ε∗] and magnetic permeability [µ∗] at
each moment of time are determined from the material correlations (1).

The temperature and ponderomotive forces having been found, the displacements, stresses and strains are
calculated from the system of thermo–elasto–plastic equations (32)–(35).

2.5 Axi-symmetrical case

Circular inductors are widely used for induction heating. Consider the case of an isotropic axisymmetric elec-
troconductive solid in a cylindrical coordinate system (r, ϕ, z). The solid is subjected to an electromagnetic field
generated by currents of density j(0) = (0, j

(0)
ϕ (r, z, t), 0) that are coaxial with the solid located in a finite subdomain

of surroundings.
As can be seen from the basic correlations, in this case only the angular component of the electric-field strength

Eϕ(r, z, t) and two components Hr(r, z, t),Hz(r, z, t) of the magnetic-field strength H, along with the correspond-
ing components of the vectors D and B, have nonzero values. Equation (7) for the solid and (4) for the surroundings
are satisfied identically. Then Eqs. (10), (12) and (21) and the interface conditions (15), (16), (24) written in terms
of Eϕ , the only nonzero component of the electric-field-strength vector E, take the form:

− ∂

∂r

(
µ−1 1

r

∂

∂r

(
rE(1)

ϕ

))
− ∂

∂z

(
µ−1 ∂E

(1)
ϕ

∂z

)
+ ∂γ

∂t
E(1)

ϕ + Fγ

∂E
(1)
ϕ

∂t
+ ε

∂2E
(1)
ϕ

∂t2 = FB, (39)

− µ−1
0

(
∂

∂r

(
1

r

∂

∂r

(
rE(0)

ϕ

))
− ∂

∂z

(
∂E

(0)
ϕ

∂z

))
+ ε0

∂2E
(0)
ϕ

∂t2 = −∂jϕ

∂t
, (40)

c
∂T

∂t
= 1

r

∂

∂r

(
λr

∂T

∂r

)
+ ∂

∂z

(
λ

∂T

∂z

)
+ Q, (r, z) ∈ �2 (41)

E(0)
ϕ = E(1)

ϕ , (42)
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(
µ−1 1

r

∂(rE
(1)
ϕ )

∂r
− µ−1

0
1

r

∂(rE
(0)
ϕ )

∂r

)
nr +

(
µ−1 ∂E

(1)
ϕ

∂z
− µ−1

0
∂E

(0)
ϕ

∂z

)
nz = 0, (43)

λ

(
∂T

∂r
nr + ∂T

∂z
nz

)
+ β(T − TS) = 0, (r, z) ∈ �2. (44)

where �2 is the meridional cross-section of the solid, (nr , nz)
T is the unit vector of the normal to the surface

�2 = ∂�2, µ and ε denote the differential magnetic and dielectric permeabilities, which are derived directly—at
a given temperature—from the magnetization and polarization curves, given by functions B∗ = (B∗, 0, B∗)T and
D∗ = (0,D∗, 0)T , respectively; γ is the coefficient of electrical conductivity; then

Fγ = γ + 2
∂ε

∂T

∂T

∂t
+ ∂ε

∂E
(1)
ϕ

∂E
(1)
ϕ

∂t
,

FB = −∂2D∗
∂T 2

(
∂T

∂t

)2

− ∂D∗
∂T

∂2T

∂t2 + ∂

∂z

(
µ−1 ∂B∗

∂T

∂T

∂t

)
− ∂

∂r

(
µ−1 ∂B∗

∂T

∂T

∂t

)
.

The problem of determining the electromagnetic field in the system consisting of solid and surroundings and of the
temperature field in the solid reduces to the solution of Eqs. (36), (38) for the solid and of (37) for the surround-
ings with zero initial value of the electric-field strength, given initial temperature distribution T0(r, z) in the solid,
interface conditions (39)–(41), as well as the conditions E

(m)
ϕ = 0 at infinity and at the z-axis, and the condition

∂T (r, 0, t)

∂r
= 0, (r, 0) ∈ �2. (45)

In doing so, the components of the magnetic induction B are determined from

B(m)
r =

∫ t

0

∂E
(m)
ϕ

∂z
dt ′, B(m)

z = −
∫ t

0

1

r

∂(rE
(m)
ϕ )

∂r
dt ′, (46)

while the magnetic-field induction H, as well as the differential magnetic permeability µ in the solid at each moment
of time are calculated using the magnetization curve (1).

The temperature having been found, the equations of nonisothermal thermo-elastoplasticity (32)–(34), along
with the boundary conditions (35) are used for the determination of the displacement u = (ur , uz), the strain
{ε} = {εrr , εϕϕ, εzz, 2εrz}T and the stress components {σ } = {σrr , σϕϕ, σzz, σrz}T . In these equations the matrix
of the differential operator for the geometric correlations and the matrix of the direction cosines of the external
normal to the surface �2 are as follows:

[A] =
⎡
⎢⎣

∂

∂r

1

r
0

∂

∂z

0 0
∂

∂z

∂

∂r

⎤
⎥⎦

T

, [�n] =
[

nr 0 nz 0
0 nz nr 0

]T

.

If we had chosen the magnetic-field strength H as a key function for determining the electromagnetic field, we
would have obtained two equations (with Hr(r, z, t),Hz(r, z, t) unknown) to be solved together with Eq. (41),
instead of the single Eq. (39). However, if a long electroconductive cylinder is subjected to a quasi-steady external
electromagnetic field independent of the z-coordinate, the only nonzero component Hz is determined from the
following equation (neglecting displacement currents in the solid):

1

r

∂

∂r

(
r

1

γ

∂H
(1)
z

∂r

)
− µ

∂H
(1)
z

∂t
= ∂B∗z

∂T

∂T

∂t
. (47)

If the interface value of H
(1)
z is known, the problem of determining the electromagnetic field and of the temper-

ature in the cylinder reduces to the solution of Eqs. (47) and

c
∂T

∂t
= 1

r

∂

∂r

(
λr

∂T

∂r

)
+ Q, (48)
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E(1)
ϕ = 1

γ

∂H
(1)
z

∂r
. (49)

along with given boundary and initial conditions. The latter issue is discussed in more detail in [22].

3 The solution procedure

The solution of the above problem is carried out via the finite-element method [21] and a unified set of single-step
algorithms [23]. In accordance with this procedure, the temperature and electromagnetic fields are determined first.

3.1 Finite-element equations for electromagnetic and temperature problems

Write down the key equations of the method of weighted residuals [24] assuming Eq. (4) to be fulfilled. With this
in mind, let us multiply the heat-transfer equation (21) by the arbitrary weight function w ∈ H 1(�), where the
Sobolev space is defined by H 1(�) = {w ∈ L2(�),∇w ∈ L2(�)} (L2 is the Lebesgue space), and integrate the
obtained equation over domain �:∫

�

(
c
∂T

∂t
− �∇(λ �∇T ) − Q

)
w0dv = 0, ∀w0 ∈ H 1(�). (50)

Applying the standard transformations∫

�

�∇(λ �∇T )w0dv =
∫

�

�∇(λ �∇T · w0)dv −
∫

�

λ �∇T · �∇w0dv =
∫

�

λn · �∇T · w0ds −
∫

�

λ �∇T · �∇w0dv (51)

and taking into account the heat-transfer condition (24) for the thermal-conductivity problem, we obtain∫

V

(
c
∂T

∂t
w0 + λ �∇T · �∇w0 − Qw0

)
dv +

∫

�

β (T − Ts)w0 ds = 0, ∀w0 ∈ H 1(V ). (52)

Let us follow the same approach to Eqs. (10) and (12), substituting the infinite space by a finite volume V

(� ⊂ V ) restricted by a surface S located far enough from the solid and given currents. Taking account of Gauss’s
formulae [25], we arrive at the equations
∫

�

(
[µ∗]−1 ( �∇ × E(1))( �∇ × w) +

(
∂γ∗
∂t

E(1) + Fq

∂E(1)

∂t
+ [ε∗]

∂2E(1)

∂t2 − Fp

)
w

)
dv

+
∫

�

[µ∗]−1
(

n × ( �∇ × E(1))
)

w ds = 0, (53)

∫

V\�

(
(µ−1

0
�∇ × E(0))( �∇ × w) +

(
ε0

∂2E(0)

∂t2 + ∂j(0)

∂t

)
w

)
dv

−
∫

�

(
µ−1

0 n × ( �∇ × E(0))
)

wds = 0, ∀w ∈ H( �∇, V ). (54)

Here H( �∇, V ) =
{

w ∈ (L2(V )
)3

, �∇ × w ∈ (L2(V )
)3 : w = 0∀r ∈ S

}
, [25]. We get a “–” sign in Eq. (54) since

n is an internal normal to surface � relative to the surroundings V \�.
Accounting for the boundary conditions (15), (16), we get an equation valid in the entire domain V :

∫

V

(
µ−1

c ( �∇ × E)( �∇ × w) +
(

γtE(1) + Fc

∂E
∂t

+ εc

∂2E
∂t2 − Fd

)
w
)

dv +
∫

�

n ×
(

[µ∗]−1 ∂B∗
∂T

∂T

∂t

)
ds = 0, (55)

where the following notations have been used:

µc = [µ∗] ; εc = [ε∗] ; γt = ∂γ∗
∂t

; Fc = Fq; Fd = Fp; E = E(1) for r ∈ V ;
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µc = µ0; εc = ε0; γt = 0; Fc = 0; Fd = −∂j(0)

∂t
; E = E(0) for r ∈ V \�.

Apply a typical finite-element space discretization [21] of Eqs. (52) and (55). In doing so, discretization of the
domain V is done in such a way that the solid-surrounding interface coincides with the boundaries of the respective
finite elements. As a result, a set of ordinary differential equations is obtained:

[L1]{Ṫh(t)} + [L0]{Th(t)} = {fT }, {Th(0)} = {T 0
h }, (56)

[M2]{Ëh(t)} + [M1]{Ėh(t)} + [M0]{Eh(t)} = {fE}, {Eh(0)} = {Ėh(0)} = 0, (57)

written in terms of the unknown temperature {Th} and the electric-field strength {Eh} in the nodes. The matrix-vector
characteristics of the derived set of equations are calculated by summing up appropriate characteristics of the finite
elements, whose components are given by the expressions:

[L0]elij =
∫

�el

λ(∇1Ni∇1Nj + ∇2Ni∇2Nj + ∇3Ni∇3Nj)dv +
∫

�el

βNiNj ds,

[L1]elij =
∫

�el

cNiNj dv, {fT }eli =
∫

�el

j(1)E(1)Nidv +
∫

�el

βNids, i, j = 1 ÷ n. (58)

The matrices [M0], [M1], [M2] are composed of the following 3 × 3 sub-matrices

[M0]eli′j ′ =
∫

V el

(µc)
−1[M∇

i′j ′ ]dv +
∫

V el

γt [Mi′j ′ ]dv,

[M1]eli′j ′ =
∫

�el

FT
c [Mi′j ′ ]dv, [M2]eli′j ′ =

∫

�el

εc[Mi′j ′ ]dv, {fE}eli′ =
∫

�el

FT
d [N ] dv, (59)

where

[M∇
i′j ′ ] =

⎛
⎜⎝

∇2N
′
i∇2N

′
j + ∇3N

′
i∇3N

′
j −∇1N

′
i∇2N

′
j −∇1N

′
i∇3N

′
j

−∇2N
′
i∇1N

′
j ∇1N

′
i∇1N

′
j + ∇3N

′
i∇3N

′
j −∇2N

′
i∇3N

′
j

−∇3N
′
i∇1N

′
j −∇3N

′
i∇2N

′
j ∇1N

′
i∇1N

′
j + ∇2N

′
i∇2N

′
j

⎞
⎟⎠ ,

[Mi′j ′ ] =
⎛
⎜⎝

N ′
iN

′
j 0 0

0 N ′
iN

′
j 0

0 0 N ′
iN

′
j

⎞
⎟⎠ , [N ] =

⎡
⎣

N ′
1 0 0 N ′

2 0 0 . . . N ′
n′ 0 0

0 N ′
1 0 0 N ′

2 0 . . . 0 N ′
n′ 0

0 0 N ′
1 0 0 N ′

2 . . . 0 0 N ′
n′

⎤
⎦ ,

i, j = 1 ÷ n′; i′ = 3i − 2, 3i − 1, 3i; j ′ = 3j − 2, 3j − 1, 3j.

Note that the shape functions Ni for the problem (56) and N ′
i for the problem (57) belong to different functional

spaces and therefore, in the general case, can be different. The number of nodes n and n′ in corresponding elements
can also be different. In the axi-symmetric case the shape functions belong to the same functional space (H 1(V ))

and coincide. Components of the matrix-vector characteristics of separate finite elements take the following form
in this case

[L0]elij =
∫

�el
2

λ

(
∂Ni

∂r

∂Nj

∂r
+ ∂Ni

∂z

∂Nj

∂z

)
rdrdz +

∫

�el
2

βNiNj rdξ,

[L1]elij =
∫

�el
2

cNiNj rdrdz, {fT }eli =
∫

�el
2

j (1)
ϕ E(1)

ϕ Nirdrdz +
∫

�el
2

βNirdξ,
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[M0]eli =
∫

V el
2

[µc]−1
(

∂Ni

∂r

∂Nj

∂r
+ ∂Ni

∂z

∂Nj

∂z

)
rdrdz +

∫

V el
2

γtNiNj rdrdz

+
∫

V el
2

[µc]−1 1

r

(
∂Ni

∂r
Nj + ∂Nj

∂r
Ni + 1

r
NiNj

)
rdrdz,

[M1]elij =
∫

V el
2

FcNiNj rdrdz, [M2]elij =
∫

V el
2

εcNiNj rdrdz, {fE}eli =
∫

V el
2

FdNirdrdz. (60)

The Cauchy problem (53), (54) is solved by use of a unified set of single-step algorithms [23], allowing to carry
out calculations for variable steps and orders of the method. In doing so, the general algorithm of ultra-weak
coupling between both nonlinear time-dependent fields is involved, which allows to use different time steps for
electromagnetic (�tE) and temperature (�tT ) calculations [14].

The temperature and ponderomotive forces generated by the external electromagnetic field being determined,
we can now consider the next stage of the problem. Namely, let us write the basic finite-element relations for the
thermoplasticity problem.

3.2 Finite-element equations for thermo-mechanic problem

Consider the deformation process step by step, according to the yield theory. Starting from the known initial values
at t = 0, the ponderomotive forces and temperature in the solid are represented by corresponding increments at
each loading step in such a way that they take their final values at the end of the deformation process. Given the
increments of the ponderomotive forces and temperature at each step allow to determine the displacement, strain
and stress increments, which are accumulated from all previous steps. Repeating this procedure step by step, we
obtain the thermomechanical time-history response of the solid.

Consider an arbitrary loading step [tj , tj + �tj ]. The thermomechanical state of the solid at the beginning of
this step (at time tj ) is known. Equilibrium equations at the end of the step read as follows:

[A]T {σ }tj +�tj + Ftj +�tj = 0. (61)

Taking into account the expressions {σ }tj +�tj = {σ }tj + {dσ }, Ftj +�tj = Ftj + dF as well as equilibrium of the
thermomechanical state at the beginning of the step, the equilibrium equations written in terms of increments take
the form

[A]T {dσ } + dF = 0. (62)

Substituting the physical relations (32) and geometrical relations (33) in Eq. (62), using the standard proce-
dure of the weighted-residuals method, and introducing finite-element approximations, we obtain the incremental
displacement equilibrium equation [21]

[Kep]{dq} = {dR}, (63)

where {dq} is the global vector of increments of displacement nodes. The elastoplastic matrix [Kep] and reaction
vector {dR} are calculated by summing up appropriate characteristics of finite elements:

[K(el)
ep ] =

∫

�el

[N]T [A]T [C]tj +�tj [A] [N]dv, (64)

{dR}(el) =
∫

�el

[N]T [A]T Ctj +�tj {εT }dv −
∫

�el

[N]T dFds

−
∫

�el

[N]T [A]T
(
[dC ] ({ε} − {εT } − {εp}) + {z}dT

)
dv +

∫

�
(el)
σ

[N]T {dp}ds. (65)

Expressions (63) hold for infinitesimally small values and, in fact, represent a piece-wise linear approximation
of a nonlinear deformation process. Applying these expressions for calculating finite values causes the solution to
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move away from the actual equilibrium state. The residual vector of equilibrium conditions makes it possible to
estimate this gap that increases with increasing load increments

{�} = {R} −
∑
el

∫

�el

[N]T [A]T {σ }eldv, (66)

where the sum is taken over all finite elements; {σ }el denotes the values of the strength vector in the element nodes;
{R} = ∑

j {dP}j is the load accumulated during previous steps. The nonlinear Eq. (60) is solved iteratively using
Newton’s method [19]. The iterative procedure is constructed in such a way that a new elasto–plastic stiffness matrix
[Kep] is formed at each iteration during the j -step over the load. Then Eq. (63) is solved and the residual (66) of
the equilibrium equation is calculated, the latter being added to the right-hand side of Eq. (63) at the next iteration.
This matrix [Kep] captures the instantaneous stresses and strengthening of the material.

A variable step �tj , j = 0, 1, . . . over the load is chosen. The increments of the displacements, strains and
stresses are calculated as soon as in some point of the solid the maximum temperature rise exceeds a predefined
value �Tj .

3.3 Approximation of material properties

As a rule, the temperature dependency of the material characteristics, deformation curves, magnetization and polar-
ization curves are approximated by certain analytical expressions. In particular, the size of the yield surface of some
steel materials is approximated in the following way [26]:

K2 = σT + b(ε̄p)m, (67)

where σT is the yield limit due to ordinary elongation; b, m are material constants.
The magnetization curve for a magnetically soft ferromagnetic material is usually approximated by the expres-

sions [19,27]

B(H) = µ0H + b · arctan(aH), (68)

B(H) =
(

µ0 + a

b + H

)
· H, (69)

where a, b are material constants.
The experimentally established relationship between periodic electromagnetic field induction and strength is

commonly known as hysteresis loop. The shape of a loop is affected by the field strength and frequency, as well as
by the temperature [17]. If the magnetic field strength is a harmonic function, the hysteresis loop can be approximated
by the expression [19]

B(H) = b · arctan

(
a

(√
1 − χ2 · H − χ

ω

∂H

∂t

))
+ µ0H, (70)

where

b = BS

2

π
, a = (µp − 1

) µ0

b
, ω = 2πf, χ =

⎧⎪⎪⎨
⎪⎪⎩

Hc

Hmax
, H0 ≤ Hmax

H0

Hmax
, H0 > Hmax

.

Here f is the frequency; H0 is the maximum value of the magnetic-field strength. The other values needed for
calculation, like the saturation induction Bs , the residual induction Br , the coercitive force Hc, the magnetic-field
strength Hmax corresponding to hysteresis saturation, and the initial magnetic permeability µp, usually are reference
values.
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The thermal behavior of the absolute magnetic permeability of ferromagnetic steel is well approximated by the
expressions [14,22]

µ(H, T ) = µ0 + (µ(H) − µ0) · �(T ), (71)

�(T ) =
{

1 − (T /TC)ϑ , T < TC

0, T ≥ TC
, (72)

where TC is the Curie temperature; ϑ is the parameter characterizing the thermal sensitivity of a material.
Taking into account expression (71), we have that Eqs. (68)–(70) take the form

B(H, T ) = µ0H + b�(T ) arctan(aH) , (73)

B(H, T ) =
(

µ0 + a · �(T )

b + H

)
· H, (74)

B(H, T ) = b · �(T ) arctan

(
a

(√
1 − χ2 · H − χ

ω

∂H

∂t

))
+ µ0H, (75)

However, these analytical expressions represent satisfactory approximations of the basic curves only for certain
materials and in limited ranges of their arguments. As a result, interpolative splines constructed on real curves are
preferable for these purposes. Usually splines describe well deformation curves of various complexity, as well as
magnetization and polarization curves for both weak and heavy fields.

4 Induction heating of a finite cylinder. Results and discussion

The model outlined in this paper was applied to the simulation of induction heating of an electrically conductive
cylinder of radius R and length 2Li . The cylinder is located within a coaxial inductor of radius Ri and length 2Li

with current density given by the expression

j(0)(r, z, t) = (0, J0(r, z) · (1 − e−ηt ) · sin(2πf t), 0); r = Ri, |z| ≤ Li, (76)

where f is the frequency, J0 denotes the maximum value of the current, η is a parameter characterizing time for
reach steady regime.

4.1 Nonferromagnetic and nondielectric material

Induction heating of a long cylinder assuming that elasto–plastic deformation is well described by the Tresca–
Saint-Venant yield condition and that the material is ideally elasto–plastic and incompressible (Poisson ratioν = 0.5)

is investigated in [18]. For the present computations we take the values of the material properties from that paper
[18], namely: µ = µ0; γ = 1.35 MS/m; λ = 16.7 W/(m K); c = 3.957 MJ/(m3 K); β = 167 W/(m2 K); Young’s
modulus E = 0.192 × 106 MPa; ν = 0.498; coefficient of thermal expansion αt = 17 × 10−6 1/K; σT = 220 MPa;
T0 = TS = 273K; J0 = 60 kA/m2; f = 30 kHz; R = 0.01 m; Ri = 0.0105 m; η = 105 1/s.

To examine the convergence of the numerical procedures, the computations were carried out for various finite-
element meshes, time steps and sizes of the domain V . The results obtained were analysed and compared with the
results of [18].

In Fig. 1 typical finite-element meshes used are shown (L = Li = 0.04 m, R0 = 2.5R, L0 = 2L).
In Fig. 2 are presented equivalent stress distributions σi(r, z) in the cylinder at moments of time t = t∗ = 7.109 s

(corresponding to the moment of the inductor being switched off in [18]). It can be seen that the solution in the
central part of the cylinder, in fact, does not depend on the z-coordinate.

The stresses σrr , σzz, σϕϕ in the equatorial section of the cylinder crossed by the plane z = 0 are shown in Fig. 3
by solid lines. Dashed lines correspond to closed-form analytical solutions given in [18]. The solutions reveal good
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Fig. 1 Typical finite element meshes

Fig. 2 Equivalent stress in the cylinder

Fig. 3 Stress state in the cross-section (z = 0) Fig. 4 Temperature on the surface for various values of the
inductor length

agreement which is already obtained when five eight-node biquadratic isoparametric finite elements are taken along
the cylinder radius (see Fig. 1b) and the following time steps are chosen

�tE = f −1/16; �tT = t∗/3; �tM = t∗. (77)

Note that the temperature and stress-state computation for this problem can be carried out with time steps
�tT ≥ 106�tE and �tM ≥ 106�tE without loss of accuracy. This solution agrees well with that obtained for
�tM = �tT = �tE = f −1/16.
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Fig. 5 Material data: magnetization (a) and deformation (b) curves at different temperatures

It should be pointed out that the substitution of the external infinite space by the finite domain V with the follow-
ing parameters: R0 = 2.5R, L0 = 2L (Fig. 1) does not affect the solution for the cylinder. The solutions coincide
for ∀R0 > 2.5R,∀L0 > 2L; moreover in the cross-section z = 0 they coincide with the analytical solution given
in [18] and with the solution of the 1-D problem (47)–(49) for a long cylinder with boundary conditions

Hz(R, t) = 6 × 104 · (1 − e−ηt ) · sin(2πf t) A/m,

λ
∂T (R, t)

∂r
= β(T − TS),

∂Hz(0, t)

∂r
= 0,

∂T (0, t)

∂r
= 0. (78)

The numerical solutions obtained for various values of parametersR0 andL0 tend to differ whenR0 <2.5R,L0 < 2L.
In the general case, the size of the boundary-effect domain for a finite cylinder depends on the inductor length,

the current magnitude, the heat-transfer conditions, etc. In Fig. 4 the temperature distributions on the cylinder sur-
face along the z-coordinate for time t = 7.109 s computed at various values of inductor length Li (0.04 (curve 1);
0.04125(2); 0.0418 (3); 0.0425 (4); 0.045 (5) and 0.05 (6)) m are shown. It can be seen that a sufficiently uniform
temperature distribution along the cylinder is obtained when the inductor length exceeds the cylinder length by 5%.
In this case the effect of the boundaries on the temperature distribution in the cylinder is minimal.

4.2 Soft ferromagnetic temperature-sensitive material

Consider induction heating of a soft ferromagnetic carbon-steel cylinder. Nonlinear dependencies of magnetic
induction on the magnetic-field strength are shown in Fig. 5a for the temperatures 273 (curve 1), 673 (2), 773
(3), 823 (4), 874 (5), 923 (6), 958 (7), 983 (8), 1,003 (9), 1,023 (10), 1,033 (11) K. These dependencies, however,
become linear with a coefficient µ0 when the temperature is above the Curie point TC (1,043 K) and the steel loses
its ferromagnetic properties. Deformation curves for steel at the temperatures 293 (curve 1), 573 (2), 773 (3), 973
(4), 1,073 (5), 1,173 (6) K are shown in Fig. 5b.

Temperature dependencies of the electrical conductivity, heat capacity, thermal conductivity, as well as the ther-
mal-expansion coefficient of the steel are given below. The electrical conductivity equals 6.013 MS/m at 273 K,
2.846 MS/m at 573 K, 1.233 MS/m at 873 K, 0.85 MS/m at 1,173 K and 0.76 MS/m at 1,473 K. The heat capac-
ity equals 3.6 MJ/(m3 K) at 273 K, 4.42 MJ/(m3 K) at 873 K, 4.9 MJ/(m3 K) at 1,373 K. The thermal conductivity
equals 48 W/(m K) at 273 K, 48 W/(m K) at 373 K, 46.5 W/(m K) at 473 K, 44 W/(m K) at 573 K, 41.1 W/(m K) at
673 K, 38.5 W/(m K) at 773 K, 31.4 W/(m K) at 873 K, 36 W/(m K) at 973 K, 26.7 W/(m K) at 1,073 K, 25.9 W/(m K)
at 1,173 K, 29.8 W/(m K) at 1,473 K. The coefficient of thermal expansion equals 11.09×10−6 1/K at 273 K,
11.09×10−6 1/K at 373 K, 14.02×10−6 1/K at 773 K, 14.76×10−6 1/K at 973 K, 1.6×10−6 1/K at 1,673 K.

The cylinder (R = 0.01m; L = 0.1m) is heated by an electrical current whose variation is given in Eq. (76)
(Ri = 1.2R; Li = 1.05L; J0 = 1 MA/m2; f = 8 kHz; η = 105 1/s; β = 13 W/(m2K)). When the external layer
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Fig. 6 Stress evolution in the cylinder during heating (a) and cooling (b)

of thickness 1.5 mm in a cross-section z = 0 of the cylinder is heated to the temperature T ≥ 1,243 K, the current
is switched off and the cylinder is cooled down due to convective heat exchange (β = 10 kW/(m2 K)) with the
surroundings having the temperature TS = 293 K (T0 = TS).

First, let us determine the stress state in the cylinder within a model of a temperature-sensitive magnetic solid
with the magnetic permeability [22] giving by

µm(T ) = µ0 + (µT0 − µ0)

(
1 −

(
T

TC

)6
)

, (79)

dependent on the temperature only, where

µT0 = 1

Hmax

∫ Hmax

0
µ
(
H, T |293 K

)
dH

(
µ(H, T ) = ∂ |B(H, T )|

∂ |H |
)

(80)

is the magnetic permeability averaged over the range of the magnetic-field strength at T = 293K calculated from
the magnetization curve in Fig. 5a (curve 1).

Figure 6 shows the variation of the circular stresses, σϕϕ , during heating (a) and cooling (b) in cylinder points
(r, 0), where r = 0 (curve 1), 2 (2), 4 (3), 6 (4), 8 (5) and 10 (6) mm. It can be observed that at the beginning of
heating in the surface layer of the cylinder the compressive stresses originate and quickly approach the yield limit.
A further heating up to the Curie temperature causes the surface layer to lose its ferromagnetic properties. This
means that the main heat sources and corresponding maximal compressive stresses are now located in the bulk
of the cylinder, while the heated surface layer undergoes unloading. The current is switched off when the desired
heating depth is reached. After that the surface layer begins to cool down and tensile stresses appear in it (see Fig.
6b, curve 6). The bulk of the cylinder cools down less rapidly. Still, during cooling the bulk shrinks and causes
the cooled surface layer to shrink quickly too, thus releasing its tensile stresses whose maximum moves inside the
cylinder. This leads to the formation of residual tensile stresses in the surface layer.

In Fig. 7 we present the residual stresses σrr , σϕϕ , σzz and the stress intensity σi (in the cross-section z = 0) due
to plastic deformation on complete cooling of the cylinder. The boundary effect is spread over a domain equal to
about six radii of the cylinder.

The effect of ponderomotive forces can be neglected in this case because the maximal stresses caused by these
forces are two orders smaller than the thermal stresses (due to heat sources).

The significant changes of the magnetic permeability in the vicinity of the Curie point require an increase of the
accuracy of the approximation. In particular, the numerical procedure diverges in the vicinity of the Curie point if the
cylinder radius is split into 10 biquadratic elements. However, twenty biquadratic eight-node finite elements along
the cylinder radius (20 × 200 elements in the cylinder) with time step �tE = Tω/16 suffice to ensure convergence
of the solutions (in fact, 80 × 200 elements provide practically the same accuracy).
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Fig. 7 Residual stresses in the cylinder Fig. 8 Stresses in the cylinder prior to and after cooling (the
dashed lines correspond to the case of temperature-independent
characteristics)

The effect of thermal sensitivity of the material characteristics on the distribution of the residual stresses was
examined. With this purpose in mind, the problem was also solved with temperature-independent material charac-
teristics (their values were obtained by averaging over the heating–cooling range) and the solutions were compared.
Figure 8 presents the stresses σϕϕ at the moment the inductor is switched off (curve 1) and on complete cooling
of the cylinder (curve 2) when the thermosensitivity of the steel characteristics are either taken into account (solid
line) or discarded (dashed line).

The effect of the temperature dependence of the steel’s electrical conductivity coefficient γ and magnetic per-
meability µ on the electric-field strength and the temperature and stress distributions in the cylinder was also
investigated [28]. Already at a temperature around 550 K, consideration of the temperature dependencies of the
characteristics is crucial. It becomes even more important with further heating of the cylinder. As the tempera-
ture approaches the Curie point TC (above 900 K), heating of the surface slows down significantly, which can be
associated with the sudden drop of the magnetic permeability near the Curie point.

Residual stresses due to ferromagnetic properties (i.e., in consideration of the magnetic field’s induction-strength
dependence) are shown in Fig. 9. In the course of a heating–cooling process the thermomechanical properties behave
in a similar way (like within the nonferromagnetic model), while the values of the residual stresses differ consid-
erably. In particular, residual circular stresses differ more than twice.

Consideration of the nonlinear magnetic-field induction-strength dependence requires significantly higher com-
puter resources (see [28]) in the case of coupled thermo-electro-dynamic problems. Besides, reference data on
induction-strength nonlinearity of many ferromagnetic materials are not available. As a result, independent val-
ues of the magnetic permeability are normally used in electromagnetic computations for ferromagnetic materials.
However, the problem of computating this independent value is still of importance.

Results for the time it takes to heat the cylinder to the required temperature as predicted by the two considered
models differ nearly by a factor of two; 0.289 s is the prediction by the nonferomagnetic model (with magnetic
permeability determined by expressions (79)–(80)) while the model for a ferromagnetic solid gives 0.159 s. Because
of this, a set of computations have been carried out to find out the magnetic permeability

µg(T ) = µ0 + (µTg − µ0)

(
1 −

(
T

TC

)6
)

(81)

independent of the magnetic-field strength, which would predict the same heating time to a given temperature by
both models.
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Fig. 9 Residual stresses in a ferromagnetic cylinder Fig. 10 Residual circular stresses predicted by different models

Figure 10 illustrates the distribution of the residual stresses σϕϕ in the cylinder during the entire cooling process.
Curve 1 was obtained by the model of a ferromagnetic material, while curves 2 and 3 were obtained by the mag-
netic-material model with respective magnetic permeabilities µm, Eq. (79), and µg , Eq. (81) which depend on the
temperature only. It can be seen that it is possible to obtain such magnetic permeabilities that would ensure accurate
stresses in the ferromagnetic cylinder. In the case under consideration, µTg is the averaged value of the magnetic
permeability for Hmax = 0.475 MA/m, while µT0 is obtained for Hmax = 1 MA/m.

Therefore, an inverse problem regarding the determination of the averaged magnetic permeability of ferromag-
netic solids using expressions like (81) can be used if the time needed for heating up to a certain temperature is
known. This would allow to get accurate enough estimates of residual stresses in ferromagnetic solids.

4.3 Magnetically hard ferromagnetic material

Here we check if the approach developed here is applicable in the case of ferromagnetic solids having hysteresis
dependence of magnetic-field induction upon the strength. Let us consider the problem of determining such values
of the induction frequency f and cooling heat-transfer parameter β which provide the shortest time of heating up
the cylinder to the temperature Tg following a cooling process conducted in a way that ensures that the maximal
stresses do not exceed a permissible level σ∗.

Suppose that the cylinder is made of an alloy characterized by a wide-enough dynamic hysteresis loop in a
harmonic electromagnetic field. Figure 11 shows the dependence of the magnetic induction on the strength for that
alloy for the temperatures 293 (curve 1), 823(2), 973(3), 1.073(4), 1.123 (5) K. At the Curie point TC (1.123 K) the
alloy losses its ferromagnetic properties and the induction-strength dependence becomes linear with coefficient µ0.
The magnetic-permeability dependence on the magnetic-field strength and temperature is approximated by Eq. (75)
(Hc = 55 kA/m; Hmax = 240 kA/m; Bs = 1.2 T; µp = 151; f = 500 Hz).

The following values of the material parameters were used in the numerical simulations:

γ = 1.12 MS/m, λ = 72.4 W/(m K), c = 1.724 MJ/(m3 K), T0 = TS = 273 K,

β = 13 W/(m2 K) (during heating), Tg = 1, 323 K, R = 0.01 m, J0 = 240 kA/m2,

E = 196 × 103 MPa, ν = 0.281, αt = 17 × 10−6 1/K, σ∗ = 100 MPa.
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Fig. 11 Dependence of magnetic induction on the strength Fig. 12 Evolution of maximal stresses during heating and
cooling

The values of the magnetic permeability in the points where electrodynamic equations have been integrated
numerically are computed by the following approximate expression

µ (|H| , T ) = µ0 + ab� (T )√
1 − χ2

(
1 + a2

(√
1 − χ2 · |H| − χ

ω
∂|H|
∂t

)) . (82)

The numerical investigations reveal that the analytical approximation (82) provides better results than direct
numerical differentiation when the magnetic-field strength is small. When the magnetic-field strength is large (high
amplitude), the results practically coincide.

Immediately after the start of heating, the stresses reach their maximum values. As heating continues, they
gradually drop. A similar trend is observed during cooling. On analyzing induction heating at various frequencies
for various cooling conditions, we established that the maximum stresses approach a permissible level σ∗ when the
frequency is 530 Hz and the heat-transfer coefficient during cooling is 655 W/(m2 K). This is illustrated in Fig. 12.

At the beginning of heating, the accumulated heat sources due to remagnetization are comparable with Joule
heat sources (see Fig. 13). Therefore they should be taken into account when computating the temperature (see
Fig. 14) and the stress state in a cylinder. Heating of the cylinder surface considerably slows down after passing
the Curie point when the material loses its ferromagnetic properties. Subsequent heating is exclusively due to Joule
heat sources which diminish considerably too.

Numerical investigations also showed that the effect of ponderomotive forces generated by a magnetic-field
strength of about 105–106 A/m on the stress state of the solids considered above is negligible.

5 Conclusions

In this paper an approach has been developed to model the thermomechanical processes in polarizable and mag-
netizable electroconductive solids subjected to an external electromagnetic field. This approach provides a more
adequate prediction of the behavior of solids made of magnetic materials in a wide temperature range. It also makes
possible to take into account the behavior during induction heating, in particular, to estimate the residual stresses,
which is the critical parameter in developing product operating regimes. It can also be of use when optimum (by
certain criteria) induction-heating regimes have to be developed for electroconductive materials, these criteria being
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Fig. 13 Heat generated in the cylinder at the begin-
ning of heating Fig. 14 Temperature evolution at the cylinder surface

particularly the uniformity of heating, minimization the heating time at given constraints on the stresses, minimal
stress deviations from some prescribed values, etc. In doing so, these values can be controlled by the inductor shape
and by current frequency and magnitude.

In modelling high-temperature induction heating, the thermosensitivity of the material properties should neces-
sarily be taken into account. Otherwise, deviations of the obtained results from the actual ones become unacceptable.

If hysteresis dependence of the magnetic-field induction upon the strength is present during the computation of
the thermomechanical parameters during induction heating, the heat sources due to remagnetization should not be
neglected. In such cases, inaccurate temperature fields and stress states will be obtained.

The effect of the ponderomotive forces (resulting from a magnetic-field strength about 105–106A/M) on the ther-
momechanical behavior of electroconductive solids with parameters as considered above and frequencies outside
resonance, can be neglected.
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